 |
443 球ベッセル関数 |
|
f-denshi.com 更新日: 22/01/13 サイト検索 |
1.球ベッセル関数
[1] ヘルムホルツ方程式 [#] を球座標に変換した際に得られる微分方程式を考えます。
球ベッセルの微分方程式,
d2y |
+ |
2 |
dy |
+ |
 |
1− |
n(n+1) |
 |
y=0 |
|
|
|
|
dx2 |
x |
dx |
x2 |
の2つの独立な解は、球ベッセル関数、球ノイマン関数, [定在波]
j n(x)=(-x)n |
 |
1 |
|
d |
 |
n |
sinx |
|
|
|
|
x |
dx |
|
x |
|
および, |
n n(x)=−(-x)n |
 |
1 |
|
d |
 |
n |
cosx |
|
|
|
|
x |
dx |
|
x |
|
または、球ハンケル関数 [拡散、または収縮する球面波]
h n(1)(x)= j n(x)+i n n(x) =−i (-x)n |
 |
1 |
|
d |
 |
n |
ei x |
|
|
|
|
x |
dx |
|
x |
h n(2)(x)= j n(x)−i n n(x) = i (-x)n |
 |
1 |
|
d |
 |
n |
eー i x |
|
|
|
|
x |
dx |
|
x |
ここで,
h n(1) *(x)= h n(2)(x)
|
この方程式はヘルムホルツ方程式を球座標で表す [#] と得られます。たとえば、ある半径の球の内部では 0、それ以外では有限・無限大というようなポテンシャルを受けている粒子のシュレーディンガー方程式を解く際にお目にかかります[#]。
[2] 球ベッセル関数 jn(x) とベッセル関数 Jn(x) [#] との関係は、
|
|
|
|
jn(x) = |
 |
π |
・Jn+1/2(x) |
|
2x |
さらに、ベッセル関数の具体的な形をもちいると、
= |
|
|
 |
π |
|
2 |
|
 |
(−1)m |
|
m!(n+m+1/2)(n+m−1/2)・・・(3/2)Γ(1/2) |
|
 |
x |
 |
n+2m |
|
|
2 |
|
|
= |
 |
(-1)m |
|
m!(n+m+1/2)(n+m−1/2)・・・(3/2)(1/2) |
|
 |
x |
 |
n+2m |
|
|
2 |
|
|
ここで,ガンマ関数の計算はこちら [#] を参考にしてください。
[3] 具体的な n について、球ベッセル関数をいくつか書いておくと、
球ベッセル関数
j 1(x) = |
1 |
sin x − |
1 |
cos x |
|
|
x2 |
x |
j 2(x) = |
 |
3 |
− |
1 |
 |
sin x − |
3 |
cos x |
|
|
|
x3 |
x |
x2 |
j 3(x) = |
 |
15 |
− |
6 |
 |
sin x − |
 |
15 |
− |
1 |
 |
cos x |
|
|
|
|
x4 |
x2 |
x3 |
x |
j 4(x) = |
 |
105 |
− |
45 |
+ |
1 |
 |
sin x − |
 |
105 |
− |
10 |
 |
cos x |
|
|
|
|
|
x5 |
x3 |
x |
x4 |
x2 |
j 5(x) = |
 |
945 |
− |
420 |
+ |
15 |
 |
sin x − |
 |
945 |
− |
105 |
+ |
1 |
 |
cos x |
|
|
|
|
|
|
x6 |
x4 |
x2 |
x5 |
x3 |
x |
球ノイマン関数
|
|
|
|
nn(x) = |
 |
π |
・Nn+1/2(x) |
|
2x |
n 1(x) = − |
1 |
cos x − |
1 |
sin x |
|
|
x2 |
x |
n 2(x) = − |
 |
3 |
− |
1 |
 |
cos x − |
3 |
sin x |
|
|
|
x3 |
x |
x2 |
n 3(x) = − |
 |
15 |
− |
6 |
 |
cos x − |
 |
15 |
− |
1 |
 |
sin x |
|
|
|
|
x4 |
x2 |
x3 |
x |
n 4(x) = − |
 |
105 |
− |
45 |
+ |
1 |
 |
cos x − |
 |
105 |
− |
10 |
 |
sin x |
|
|
|
|
|
x5 |
x3 |
x |
x4 |
x2 |
n 5(x) = − |
 |
945 |
− |
420 |
+ |
15 |
 |
cos x − |
 |
945 |
− |
105 |
+ |
1 |
 |
sin x |
|
|
|
|
|
|
x6 |
x4 |
x2 |
x5 |
x3 |
x |

球ハンケル関数の具体形
|
|
|
|
hn(1)(x) = |
 |
π |
・Hn+1/2(1)(x) |
|
2x |
h(1)0(ikx) =− |
1 |
exp (ikx ) |
|
kx |
h(1)1(ikx) = i |
 |
1 |
+ |
1 |
 |
exp (ikx ) |
|
|
(kx)2 |
kx |
h(1)2(ikx) = |
 |
3 |
+ |
3 |
+ |
1 |
 |
exp (ikx ) |
|
|
|
(kx)3 |
(kx)2 |
kx |
h(1)3(ikx) =−i |
 |
15 |
+ |
15 |
+ |
6 |
+ |
1 |
 |
exp (ikx) |
|
|
|
|
(kx)4 |
(kx)3 |
(kx)2 |
kx |
h(1)4(ikx) = − |
 |
105 |
+ |
105 |
+ |
45 |
+ |
10 |
+ |
1 |
 |
exp (ikx) |
|
|
|
|
|
(kx)5 |
(kx)4 |
(kx)3 |
(kx)2 |
kx |
jh(1)5(ikx) = i |
 |
945 |
+ |
945 |
+ |
420 |
+ |
105 |
+ |
15 |
+ |
1 |
 |
exp (ikx) |
|
|
|
|
|
|
(kx)6 |
(kx)5 |
(kx)4 |
(kx)3 |
(kx)2 |
kx |

[4] 球ベッセル関数・球ハンケル関数の漸近形
漸近形 |
j n(x) |
n n(x) |
h(1)n(x) |
x ⇒ 0 |
|
|
- |
x ⇒ ∞ |
1 |
・cos |
 |
x − |
(n+1)π |
 |
|
|
x |
2 |
1 |
・sin |
 |
x − |
nπ |
 |
|
|
x |
2 |
|
1 |
・sin |
 |
x − |
(n+1)π |
 |
|
|
x |
2 |
-1 |
・cos |
 |
x − |
nπ |
 |
|
|
x |
2 |
|
|
(2n+1)!! ≡ (2n+1)(2n−1)・・・・・5・3・1
[目次へ]
h 0(x) = −i |
cos x |
+ |
sin x |
 |
|
x |
|
|
x |
h 0(ix)= − |
cos x |
−i |
sin x |
 |
|
x |
|
|
x |
j 1(x) = |
1 |
sin x − |
1 |
cos x |
|
|
x2 |
x |
n 1(x) i = − |
i |
cos x − |
i |
sin x |
|
|
x2 |
x |
h 1(x) = − |
 |
i |
+ |
1 |
 |
cos x + |
 |
1 |
− |
i |
 |
sin x |
|
|
|
|
x2 |
x |
x2 |
x |
h 1(ix) = |
 |
i |
+ |
i |
 |
cos x − |
 |
1 |
+ |
1 |
 |
sin x |
|
|
|
|
x2 |
x |
x2 |
x |
= |
 |
i |
+ |
i |
 |
exp ( ix ) |
|
|
x2 |
x |
j 2(x) = |
 |
3 |
− |
1 |
 |
sin x − |
3 |
cos x |
|
|
|
x3 |
x |
x2 |
n 2(x) i= − |
 |
3i |
− |
1i |
 |
cos x − |
3i |
sin x |
|
|
|
x3 |
x |
x2 |
h 2(x) = − |
 |
3i |
+ |
|
3 |
− |
1i |
 |
cos x+ |
 |
3 |
− |
3i |
− |
1 |
|
 |
sin x |
|
|
|
|
|
|
x3 |
x2 |
x |
x3 |
x2 |
x |
h 2(ix) = |
 |
3 |
|
+ |
3 |
+ |
1 |
 |
cos x + |
 |
3i |
+ |
3i |
+ |
i |
|
 |
sin x |
|
|
|
|
|
|
x3 |
x2 |
x |
x3 |
x2 |
x |
= |
 |
3 |
+ |
3 |
+ |
1 |
|
 |
exp ( kx) |
|
|
|
x3 |
x2 |
x |
j 3(x) = |
 |
15 |
− |
6 |
 |
sin x − |
 |
15 |
− |
1 |
 |
cos x |
|
|
|
|
x4 |
x2 |
x3 |
x |
n 3(x) i = − |
 |
15i |
− |
6i |
 |
cos x − |
 |
15i |
− |
i |
 |
sin x |
|
|
|
|
x4 |
x2 |
x3 |
x |
h 3(x) = |
− |
 |
15i |
+ |
15 |
− |
6i |
− |
1 |
|
cos x + |
 |
15 |
− |
15i |
− |
6 |
|
+ |
i |
 |
sin x |
|
|
|
|
|
|
|
|
x4 |
x3 |
x2 |
x |
x4 |
x3 |
x2 |
x |
h 3(ix) = |
|
− |
 |
15i |
+ |
15i |
+ |
6i |
+ |
i |
 |
cos x + |
 |
15 |
+ |
15 |
+ |
6 |
|
+ |
1 |
 |
sin x |
|
|
|
|
|
|
|
|
x4 |
x3 |
x2 |
x |
x4 |
x3 |
x2 |
x |
= |
−i |
 |
15 |
+ |
15 |
+ |
6 |
+ |
1 |
 |
exp(i x ) |
|
|
|
|
x4 |
x3 |
x2 |
x |
j 4(x) = |
 |
105 |
− |
45 |
+ |
1 |
 |
sin x − |
 |
105 |
− |
10 |
 |
cos x |
|
|
|
|
|
x5 |
x3 |
x |
x4 |
x2 |
n 4(x)i = − |
 |
105i |
− |
45i |
+ |
i |
 |
cos x − |
 |
105i |
− |
10i |
 |
sin x |
|
|
|
|
|
x5 |
x3 |
x |
x4 |
x2 |
h 4(x) = − |
 |
105i |
+ |
105 |
− |
45i |
− |
10 |
+ |
i |
 |
cos x − |
 |
− |
105 |
+ |
105i |
+ |
45 |
− |
10i |
− |
1 |
 |
sin x |
|
|
|
|
|
|
|
|
|
|
x5 |
x4 |
x3 |
x2 |
x |
x5 |
x4 |
x3 |
x2 |
x |
h 4(ix) = − |
 |
105 |
+ |
105 |
+ |
45 |
+ |
10 |
+ |
1 |
 |
cos x − |
 |
|
105i |
+ |
105i |
+ |
45i |
+ |
10i |
+ |
i |
 |
sin x |
|
|
|
|
|
|
|
|
|
|
x5 |
x4 |
x3 |
x2 |
x |
x5 |
x4 |
x3 |
x2 |
x |
= − |
 |
105 |
+ |
105 |
+ |
45 |
+ |
10 |
+ |
1 |
 |
exp (ix) |
|
|
|
|
|
x5 |
x4 |
x3 |
x2 |
x |
j 5(x) = |
 |
945 |
− |
420 |
+ |
15 |
 |
sin x − |
 |
945 |
− |
105 |
+ |
1 |
 |
cos x |
|
|
|
|
|
|
x6 |
x4 |
x2 |
x5 |
x3 |
x |
n 5(x)i = − |
 |
945i |
− |
420i |
+ |
15i |
 |
cos x − |
 |
945i |
− |
105i |
+ |
i |
 |
sin x |
|
|
|
|
|
|
x6 |
x4 |
x2 |
x5 |
x3 |
x |
h 5(x)= − |
 |
945i |
+ |
945 |
− |
420i |
− |
105 |
+ |
15i |
+ |
1 |
 |
cos x − |
 |
− |
945 |
+ |
945i |
+ |
420 |
− |
105i |
− |
15 |
+ |
i |
 |
sin x |
|
|
|
|
|
|
|
|
|
|
|
|
x6 |
x5 |
x4 |
x3 |
x2 |
x |
x6 |
x5 |
x4 |
x3 |
x2 |
x |
h 5(ix)= − |
 |
− |
945i |
− |
945i |
− |
420i |
− |
105i |
− |
15i |
− |
i |
 |
cos x − |
 |
945 |
+ |
945 |
+ |
420 |
+ |
105 |
+ |
15 |
+ |
1 |
 |
sin x |
|
|
|
|
|
|
|
|
|
|
|
|
x6 |
x5 |
x4 |
x3 |
x2 |
x |
x6 |
x5 |
x4 |
x3 |
x2 |
x |
= i |
 |
945 |
+ |
945 |
+ |
420 |
+ |
105 |
+ |
15 |
+ |
1 |
 |
exp (ix) |
|
|
|
|
|
|
x6 |
x5 |
x4 |
x3 |
x2 |
x |